【PAT甲级 单源最短路径】1087 All Roads Lead to Rome (30 分)
字符串索引图,使用了map映射,用了一些不常用的知识,能这么写出来很开心
这么写可以使得map的默认值为INF而不是值初始化的0
struct defaultCost{int cost;defaultCost():cost(INF){}; // 更改不存在key的map的默认value值为INFdefaultCost(int c):cost(c){}
};
map<string, defaultCost> cost; // 之前的dist数组,改名了
当点的编号不是数字而是字符串的时候使用map是个不错的方法
map<string, vector<Node> > G; // 边权
map<string, int> V; // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
map<string, bool> vis;
map<string, vector<string>> pre;
Dijkstra + DFS
# include <iostream>
# include <algorithm>
# include <vector>
# include <map>
using namespace std;const int MAXV = 210;
const int INF = 0xffffff;struct Node{string name;int cost;
};
// 设一个结构体并赋予初值就可以设定访问map不存在的key时的默认value值
struct defaultCost{int cost;defaultCost():cost(INF){}; // 更改不存在key的map的默认value值为INFdefaultCost(int c):cost(c){}
};map<string, vector<Node> > G; // 边权
map<string, int> V; // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
map<string, bool> vis;
map<string, vector<string>> pre;int N, K;
string st, ed = "ROM";void Dijsktra(string s){cost[s] = 0;for(int i = 0;i < N;++i){string u = "000";int MIN = INF;for(auto p: V){string j = p.first;if(vis[j] == false && cost[j].cost < MIN){u = j;MIN = cost[j].cost;}}if(u == "000") return;vis[u] = true;for(Node next: G[u]){string v = next.name;int uv_cost = next.cost;if(vis[v] == false){if(cost[u].cost + uv_cost < cost[v].cost){cost[v].cost = cost[u].cost + uv_cost;pre[v].clear();pre[v].push_back(u);} elseif(cost[u].cost + uv_cost == cost[v].cost){pre[v].push_back(u);}}}}}vector<string> path, tempPath;
int routes = 0; // 相等cost的路径数量
int maxSumHappyness = -1; // 最大快乐值;
double maxAvgHappyness = -1; // 最大平均快乐值
void DFS(string v){if(v == st){routes++;tempPath.push_back(st);int sumhappyness = 0;double avghappyness = 0.0;for(string id: tempPath){sumhappyness += V[id];} avghappyness = sumhappyness / (tempPath.size() - 1);if(sumhappyness > maxSumHappyness){maxSumHappyness = sumhappyness;maxAvgHappyness = avghappyness;path = tempPath;}elseif(sumhappyness == maxSumHappyness){if(avghappyness > maxAvgHappyness){maxAvgHappyness = avghappyness;path = tempPath; }}tempPath.pop_back();return;}tempPath.push_back(v);for(string u: pre[v]){DFS(u);}tempPath.pop_back();
}int main(){cin >> N >> K >> st;for(int i = 0;i < N-1;++i){ // 不输入起点的开心值,所以要N-1,并且给起点得到开心值初始化为0(被坑了)string city; int happy;cin >> city >> happy;V[city] = happy;}V[st] = 0;for(int i = 0;i < K;++i){string city1, city2; int cost;cin >> city1 >> city2 >> cost;G[city1].push_back({city2, cost});G[city2].push_back({city1, cost});}Dijsktra(st);DFS(ed);printf("%d %d %d %.0f\n",routes, cost[ed].cost, maxSumHappyness, maxAvgHappyness);for(int i = path.size() - 1;i >= 0;--i){cout << path[i];if(i != 0) cout << "->";else cout << "\n";}return 0;
}
使用优先队列优化
# include <iostream>
# include <algorithm>
# include <vector>
# include <map>
# include <unordered_map>
# include <queue>using namespace std;const int MAXV = 210;
const int INF = 0xffffff;struct Node{string name;int cost;
};
// 设一个结构体并赋予初值就可以设定访问map不存在的key时的默认value值
struct defaultCost{int cost;defaultCost():cost(INF){}; // 记得添上一个默认函数(优先队列优化时这个还是必要的)defaultCost(int c):cost(c){}
};map<string, vector<Node> > G; // 边权
map<string, int> V; // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
// map<string, bool> vis; // 优先队列优化时不需要visit数组
map<string, vector<string>> pre;// first是起点到second点的距离,second是顶点的名字
typedef pair<int, string> Pair;
// 使用优先级队列,因为pair有比较运算,所以可直接传入
priority_queue<Pair, vector<Pair>, greater<Pair>> Q; int N, K;
string st, ed = "ROM";void Dijsktra(string s){cost[s] = 0;Q.push({cost[s].cost, s}); // push入起点while(!Q.empty()){Pair p = Q.top();Q.pop();string u = p.second;if(cost[u].cost < p.first) continue;for(Node next: G[u]){string v = next.name;int uv_cost = next.cost;if(cost[u].cost + uv_cost < cost[v].cost){cost[v].cost = cost[u].cost + uv_cost;Q.push({cost[v].cost ,v}); // push入更短的Pairpre[v].clear();pre[v].push_back(u);} elseif(cost[u].cost + uv_cost == cost[v].cost){pre[v].push_back(u);}}}}vector<string> path, tempPath;
int routes = 0; // 相等cost的路径数量
int maxSumHappyness = -1; // 最大快乐值;
double maxAvgHappyness = -1; // 平均快乐值
void DFS(string v){if(v == st){routes++;tempPath.push_back(st);int sumhappyness = 0;double avghappyness = 0.0;for(string id: tempPath){sumhappyness += V[id];} avghappyness = sumhappyness / (tempPath.size() - 1);if(sumhappyness > maxSumHappyness){maxSumHappyness = sumhappyness;maxAvgHappyness = avghappyness;path = tempPath;}elseif(sumhappyness == maxSumHappyness){if(avghappyness > maxAvgHappyness){maxAvgHappyness = avghappyness;path = tempPath; }}tempPath.pop_back();return;}tempPath.push_back(v);for(string u: pre[v]){DFS(u);}tempPath.pop_back();
}int main(){cin >> N >> K >> st;for(int i = 0;i < N-1;++i){ // 不输入起点的开心值,所以要N-1,并且给起点得到开心值初始化为0(被坑了)string city; int happy;cin >> city >> happy;V[city] = happy;}V[st] = 0;for(int i = 0;i < K;++i){string city1, city2; int cost;cin >> city1 >> city2 >> cost;G[city1].push_back({city2, cost});G[city2].push_back({city1, cost});}Dijsktra(st);DFS(ed);printf("%d %d %d %.0f\n",routes, cost[ed].cost, maxSumHappyness, maxAvgHappyness);for(int i = path.size() - 1;i >= 0;--i){cout << path[i];if(i != 0) cout << "->";else cout << "\n";}return 0;
}
【PAT甲级 单源最短路径】1087 All Roads Lead to Rome (30 分)
字符串索引图,使用了map映射,用了一些不常用的知识,能这么写出来很开心
这么写可以使得map的默认值为INF而不是值初始化的0
struct defaultCost{int cost;defaultCost():cost(INF){}; // 更改不存在key的map的默认value值为INFdefaultCost(int c):cost(c){}
};
map<string, defaultCost> cost; // 之前的dist数组,改名了
当点的编号不是数字而是字符串的时候使用map是个不错的方法
map<string, vector<Node> > G; // 边权
map<string, int> V; // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
map<string, bool> vis;
map<string, vector<string>> pre;
Dijkstra + DFS
# include <iostream>
# include <algorithm>
# include <vector>
# include <map>
using namespace std;const int MAXV = 210;
const int INF = 0xffffff;struct Node{string name;int cost;
};
// 设一个结构体并赋予初值就可以设定访问map不存在的key时的默认value值
struct defaultCost{int cost;defaultCost():cost(INF){}; // 更改不存在key的map的默认value值为INFdefaultCost(int c):cost(c){}
};map<string, vector<Node> > G; // 边权
map<string, int> V; // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
map<string, bool> vis;
map<string, vector<string>> pre;int N, K;
string st, ed = "ROM";void Dijsktra(string s){cost[s] = 0;for(int i = 0;i < N;++i){string u = "000";int MIN = INF;for(auto p: V){string j = p.first;if(vis[j] == false && cost[j].cost < MIN){u = j;MIN = cost[j].cost;}}if(u == "000") return;vis[u] = true;for(Node next: G[u]){string v = next.name;int uv_cost = next.cost;if(vis[v] == false){if(cost[u].cost + uv_cost < cost[v].cost){cost[v].cost = cost[u].cost + uv_cost;pre[v].clear();pre[v].push_back(u);} elseif(cost[u].cost + uv_cost == cost[v].cost){pre[v].push_back(u);}}}}}vector<string> path, tempPath;
int routes = 0; // 相等cost的路径数量
int maxSumHappyness = -1; // 最大快乐值;
double maxAvgHappyness = -1; // 最大平均快乐值
void DFS(string v){if(v == st){routes++;tempPath.push_back(st);int sumhappyness = 0;double avghappyness = 0.0;for(string id: tempPath){sumhappyness += V[id];} avghappyness = sumhappyness / (tempPath.size() - 1);if(sumhappyness > maxSumHappyness){maxSumHappyness = sumhappyness;maxAvgHappyness = avghappyness;path = tempPath;}elseif(sumhappyness == maxSumHappyness){if(avghappyness > maxAvgHappyness){maxAvgHappyness = avghappyness;path = tempPath; }}tempPath.pop_back();return;}tempPath.push_back(v);for(string u: pre[v]){DFS(u);}tempPath.pop_back();
}int main(){cin >> N >> K >> st;for(int i = 0;i < N-1;++i){ // 不输入起点的开心值,所以要N-1,并且给起点得到开心值初始化为0(被坑了)string city; int happy;cin >> city >> happy;V[city] = happy;}V[st] = 0;for(int i = 0;i < K;++i){string city1, city2; int cost;cin >> city1 >> city2 >> cost;G[city1].push_back({city2, cost});G[city2].push_back({city1, cost});}Dijsktra(st);DFS(ed);printf("%d %d %d %.0f\n",routes, cost[ed].cost, maxSumHappyness, maxAvgHappyness);for(int i = path.size() - 1;i >= 0;--i){cout << path[i];if(i != 0) cout << "->";else cout << "\n";}return 0;
}
使用优先队列优化
# include <iostream>
# include <algorithm>
# include <vector>
# include <map>
# include <unordered_map>
# include <queue>using namespace std;const int MAXV = 210;
const int INF = 0xffffff;struct Node{string name;int cost;
};
// 设一个结构体并赋予初值就可以设定访问map不存在的key时的默认value值
struct defaultCost{int cost;defaultCost():cost(INF){}; // 记得添上一个默认函数(优先队列优化时这个还是必要的)defaultCost(int c):cost(c){}
};map<string, vector<Node> > G; // 边权
map<string, int> V; // 点权
map<string, defaultCost> cost; // 之前的dist数组,改名了
// map<string, bool> vis; // 优先队列优化时不需要visit数组
map<string, vector<string>> pre;// first是起点到second点的距离,second是顶点的名字
typedef pair<int, string> Pair;
// 使用优先级队列,因为pair有比较运算,所以可直接传入
priority_queue<Pair, vector<Pair>, greater<Pair>> Q; int N, K;
string st, ed = "ROM";void Dijsktra(string s){cost[s] = 0;Q.push({cost[s].cost, s}); // push入起点while(!Q.empty()){Pair p = Q.top();Q.pop();string u = p.second;if(cost[u].cost < p.first) continue;for(Node next: G[u]){string v = next.name;int uv_cost = next.cost;if(cost[u].cost + uv_cost < cost[v].cost){cost[v].cost = cost[u].cost + uv_cost;Q.push({cost[v].cost ,v}); // push入更短的Pairpre[v].clear();pre[v].push_back(u);} elseif(cost[u].cost + uv_cost == cost[v].cost){pre[v].push_back(u);}}}}vector<string> path, tempPath;
int routes = 0; // 相等cost的路径数量
int maxSumHappyness = -1; // 最大快乐值;
double maxAvgHappyness = -1; // 平均快乐值
void DFS(string v){if(v == st){routes++;tempPath.push_back(st);int sumhappyness = 0;double avghappyness = 0.0;for(string id: tempPath){sumhappyness += V[id];} avghappyness = sumhappyness / (tempPath.size() - 1);if(sumhappyness > maxSumHappyness){maxSumHappyness = sumhappyness;maxAvgHappyness = avghappyness;path = tempPath;}elseif(sumhappyness == maxSumHappyness){if(avghappyness > maxAvgHappyness){maxAvgHappyness = avghappyness;path = tempPath; }}tempPath.pop_back();return;}tempPath.push_back(v);for(string u: pre[v]){DFS(u);}tempPath.pop_back();
}int main(){cin >> N >> K >> st;for(int i = 0;i < N-1;++i){ // 不输入起点的开心值,所以要N-1,并且给起点得到开心值初始化为0(被坑了)string city; int happy;cin >> city >> happy;V[city] = happy;}V[st] = 0;for(int i = 0;i < K;++i){string city1, city2; int cost;cin >> city1 >> city2 >> cost;G[city1].push_back({city2, cost});G[city2].push_back({city1, cost});}Dijsktra(st);DFS(ed);printf("%d %d %d %.0f\n",routes, cost[ed].cost, maxSumHappyness, maxAvgHappyness);for(int i = path.size() - 1;i >= 0;--i){cout << path[i];if(i != 0) cout << "->";else cout << "\n";}return 0;
}